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~ CIRCULAR OISCthese theoretical curves is the same as those obtained from the ex-

perimental self-oscillating tunnel-diode mixer [1].

CONCLUSIONS

The following points are worthwhile considering:
1) Therelatively small magnitudes of self-oscillations correspond

to large gains. This is in agreement with the results obtained for

externally applied local-oscillator tunnel-diode mixers [4].
2) In a tunnel-diode mixer with external local oscillator, both

the bias voltage and the local oscillator magnitude can be varied

independently. In the case of self-oscillating tunnel-diode mixer, the

choice of bias voltage also fixes the oscillation magnitude and hence

the infinite conversion loss condition becomes an inherent property

of the mixer.
3) Byspitable choice of GL)thecritical dependency ofgain on the

bias voltage can be minimized, However, in such an optimization
procedure the noise figure of the mixer should also be considered.
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A New Method for Calculating the Capacitance of a

Circular Disk for Microwave Integrated Circuits

T, ITOH AND R. MITTRA

Absfracf—A method for calculating the capacitance of a circular

disk on a dielectric substrate backed by a ground plsne is presented.
Hsnkel transforms and Galerkin’s method are used to derive the
expression for the capacitance. Numerical results are compared with
the experimental data and good agreement is reported.

The increasing use of integrated circuits (IC’S) at microwave

frequencies has created a great deal of interest in the theoretical and

experimental studies of microstrip lines and other similar structures.
However, most of these studies are concerned with the properties of

infinitely long transmission lines [1]. In actual microwave IC’S,
many finite-sized or lumped elements are employed to realize the

desired functional devices. Hence, the analysis of these finite-sized
elements is also important; however, to date, very little has been re-

ported on the analysis of such elements.
Among the finite elements, a rectangular microstrip was recently

analyzed by Farrar and Adams [2 ] and Itoh etal. [3]. Another typi-
cal finite element is the circular disk (see Fig. 1) for which reliable
design data are lacking. In the present short paper a new method is
presented for calculating the total capacitance of the circular disk
under the quasi-static approximation. The method is an extension of

the spectral domain technique developed in [3].
The first step is to write Poisson’s equation for the potential o in

the cylindrical coordinate

(1)

in which p is the charge distribution on the disk, and the O terms van-
ished because of the circular symmetry. Let us now introduce the
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Fk. 1. Circular disk for the microwave integrated circuit.

Hankel transform of the order zero:

~(a, z) =
f

‘+(Lz).To(ar)r dr.
o

Upon Hankel transforming (1) we obtain

G-”’) .0
7(CZ,z) = – %)6(2–d)

where

(2)

(3)

S
o

~(a) = /2(f)~&W’)Y dr
o

is the Hankel transform of the charge distribution. The general solu-
tion of (3) which satjsfies the boundary condition I$(a, O) = O and the
radiation condition @(a, + co) = O is

{

A(a) sinh az,
T(a, z) =

O<z<d

B(a) exp [–IX(Z – d)], z>d. (4)

The unknown coefficients A (a) and B(a) are determined so that the

interface conditions

;(cz, d + O)= ~(a, d – O)

&kx,~+O–e+$(+ O)=–b(a)
eo

are satisfied. Upon eliminating A and B we obtain

?%);(a) = ~i(a, d) + ?,(a, d)

where

a(a) =
1

Clw[l + 6, Coth ad]

(5)

J~j(CY,d) ‘= ‘.TO(OY)Vdf’ =g.TI(O17J)
0 a

J
.

&(a, d) ,= &v, d)J&w)r dr.
a

Equation (5) corresponds to the integral equation in the conventional

space-domain formulation where the convolution integral appears in-
stead of the product @ found in (5). Note that (5) contains two un-
knowns ~ and ~0. However, as will be shown shortly, ~0 is eliminated
in the process of solution.

Galerkin’s method is now applied to (5). As the first step toward

thk, j5(cY) is expanded in terms of the known basis functions ji(a):

where p.(r), the inverse transforms of ji (a), are chosen so that they

are zero for r > a. Substituting (6) in (5) and taking an inner product
of one of the & with (5), we have

k Kmn4 = % m=l,2, . . ..iV (7)
m=l

J

.
Km. = &(a)@&i@a da (8)

o
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Fig. 2. Capacitance of achcufsr disk (normaUzed byaraz/d, e=eoc,).

J
.

J
.

am = ;m(a!)zi(ajd)rrda = ~ ,L%@dr.
o

(9)

In the derivation of (9), Parseval’s relation has been used; the use

of this relation results in the elimination of ~0 since the inverses of +0

and~~are nonzero only at the complementary regions of r.
The total capacitance of the structure is

.f

N

c= a2~rP(r)dr = 2z~andn. (lo)
0 n-l

For the numerical calculation we have chosen N=l, although the

accuracy of the result can be improved by increasing N. The two
types of functions tested were as follows.

1) Maxwell function:

/

1
—— r<a,

pi(r) = <m’
;I(a) –slnaa

a

k? r>a.

2) Gate function:

1
aJl(aa)

r<a,
pi(r) = 1’

;I(a) = —
a

[0, r>a.

Fig. 2 shows the capacitance of acircular disk for three different
substrates, viz., .s,=l,2.65, and9.6, calculated byusing two different
choices of basis functions. Note that there arecrossover points for the

two curves obtained by using the Maxwell function and the gate
functipn. Since the capacitance given by (1 O) gives a stationary value

foratrial set of basis functions, andsince theone which maximizes

the value of C yields a result closest to the exact one, it is evident that

the Maxwell function should be used for d/a values above the cross-

over point, while the gate function will give more accurate results
below it. The reason whythegate function gives better results for

larger disks even though it ignores the edge behavior is perhaps due
to the fact that the contribution of the edge singularity to the total
capacitance of thelarge disk isarelatively small quantity, Itis noted
that for d/a>O.5, the numerical results using the gate function are
about 10 percent lower, andhence less accurate than the correspond-
ing results for the Maxwell function.

The discrepancy between the two results is even greater for

d/a <0.1, where the gate function results are now more accurate,
As expected, for small values of d/a, C approaches ~eO~a2/d, which

is the value of the capacitance that would be obtained by neglecting

the fringe effects. For *=1, it is known that Cd/(ara2) approaches

8d/(ra) as d/a-@. Ford/a =lO, this asymptotic value isapproxi-
mately 25.5 and the numerical value computed by the present method
is 26.2.

The required computation time for the above calculations with
four-digit accuracy was about 6 s per structure for the choice 1) and
60 s for 2), I both on the CDC G-20 computer. For comparison pur-

poses, this computer is about seven to ten times slower than the IBM
360/75.

In order to check the accuracy of the computed results, the ca-

pacitance of the actual circular disks on the substrate of q= 2.65 has
been measured at 1.592 MHz. Fig. 2 shows that the experimental
results are in excellent agreement with the numerical computation;

in fact, the measured and the computed values differ by less than 3

percent. To conclude the discussion we might add that the principal

advantage of the method is its numerical efficiency. An important
feature of the method is that the numerical effort involved is not too

dependent upon the physical size of the structure. In contrast, in
most conventional numerical methods the computational effort is

directly proportional to the size of the structure which in turn deter-
mines the size of the associated matrix.
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I This is because of the use of the time-consuming BESJ subroutine for the calcula.
~ion of JI. However, it is p?ssib!e to reduce the computation time for J, by employ-
mg the polynomial approxlmatmm for J1 given in [4].

Letters

Comments on “Analysis of Automatic Homodyne

Method Amplitude and Phase Measurements”

GEORGE E. SCHAFER

In the above short paper,l on page 623, the authors state: “Phase
quadrature between the homodyne and the modulated carriers pro-
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duces a null in the detector output. ... ” This is only true if the
modulated carrier is completely suppressed, which is the ideal case
discussed by Robertson [9].’ Inspection of the phasor when the car-
rier is not suppressed, as in Schafer [11 ], 1 shows that the null is pro-

duced when the modulated carrier is in phase quadrature with the
resultant of the homodyne and modulated carriers. The error intro-

duced by the authors’ assumption of quadrature conditions varies
from less than O.O1° for a 90-dB ratio to 90° for equality of the two
signals. In most applications this error is less than 0.6” (40 dB or
greater ratio), and for moderate accuracies it can be ignored. For

more precise measurements, however, one must use the resultant and
modulated carrier in phase-quadrature analysis.


