SHORT PAPERS

these theoretical curves is the same as those obtained from the ex-
perimental self-oscillating tunnel-diode mixer [1].

CoNcLUsIONS

The following points are worthwhile considering:

1) Therelatively small magnitudes of self-oscillations correspond
to large gains. This is in agreement with the results obtained for
externally applied local-oscillator tunnel-diode mixers [4].

2) In a tunnel-diode mixer with external local oscillator, both
the bias voltage and the local oscillator magnitude can be varied
independently, In the case of self-oscillating tunnel-diode mixer, the
choice of bias voltage also fixes the oscillation magnitude and hence
the infinite conversion loss condition becomes an inherent property
of the mixer.

3) By suitable choice of G, the critical dependency of gain on the
bias voltage can be minimized. However, in such an optimization
procedure the noise figure of the mixer should also be considered.
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A New Method for Calculating the Capacitance of a
Circular Disk for Microwave Integrated Circuits

T. ITOH anp R. MITTRA

Abstract—A method for calculating the capacitance of a circular
disk on a dielectric substrate backed by a ground plane is presented.
Hankel transforms and Galerkin’s method are used to derive the
expression for the capacitance. Numerical results are compared with
the experimental data and good agreement is reported.

The increasing use of integrated circuits (IC's) at microwave
frequencies has created a great deal of interest in the theoretical and
experimental studies of microstrip lines and other similar structures.
However, most of these studies are concerned with the properties of
infinitely long transmission lines [1]. In actual microwave IC's,
many finite-sized or lumped elements are employed to realize the
desired functional devices. Hence, the analysis of these finite-sized
elements is also important; however, to date, very little has been re-
ported on the analysis of such elements.

Among the finite elements, a rectangular microstrip was recently
analyzed by Farrar and Adams [2] and Itoh et al. [3]. Another typi-
cal finite element is the circular disk (see Fig. 1) for which reliable
design data are lacking. In the present short paper a new method is
presented for calculating the total capacitance of the circular disk
under the quasi-static approximation. The method is an extension of
the spectral domain technique developed in [3].

The first step is to write Poisson’s equation for the potential ¢ in
the cylindrical coordinate
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in which p is the charge distribution on the disk, and the 8 terms van-
ished because of the circular symmetry. Let us now introduce the
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Fig. 1. Circular disk for the microwave integrated circuit.

Hankel transform of the order zero:
da, 2) = f o(r, ) olar)r dr. @
]

Upon Hankel transforming (1) we obtain
a: ~ 1.
)bl d) = — @i~ D @)
& €0
where )

pe = [ O“p(rm(w)r dr

is the Hankel transform of the charge distribution. The general solu-
tion of (3) which satisfies the boundary condition ¢ (e, 0) =0 and the
radiation condition ¢ (e, + «)=01is

A(a) sinh az, 0<z<d

B(a) exp [—a(z — d)], z > d. 4)

The unknown coefficients 4 (o) and B(e) are determined so that the
interface conditions
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are satisfied. Upon eliminating 4 and B we obtain
G(a)pla) = $ila, d) + ola, d) ®
where
- 1
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Fila,d) = fo Folar)r dr = 2 Jiea)

Folar, d) = f =°¢(r’ T olar)r dr.

Equation (5) corresponds to the integral equation in the conventional
space-domain formulation where the convolution integral appears in-
stead of the product G found in (5). Note that (5) contains two un-
knowns § and ¢o. However, as will be shown shortly, ¢y is eliminated
in the process of solution.

Galerkin’s method is now applied to (5). As the first step toward
this, f(a) is expanded in terms of the known basis functions g.(«):

-~ N ~
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where pa(7), the inverse transforms of §a(c), are chosen so that they
are zero for r >a. Substituting (6) in (5) and taking an inner product
of one of the g, with (5), we have
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Fig. 2. Capacitance of a circular disk (normalized by exa?/d, € =epe;).
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In the derivation of (9), Parseval’s relation has been used; the use
of this relation results in the elimination of ¢, since the inverses of b
and B, are nonzero only at the complementary regions of 7.

The total capacitance of the structure is

a N
C= f 2zxrp(r) dr = 2x Z nn.
0

n=1
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For the numerical calculation we have chosen N=1, although the
accuracy of the result can be improved by increasing N. The two
types of functions tested were as follows.

1) Maxwell function:

1 < Tia) = sin aa
n()={va—np 5% MET
0, r > a.
2) Gate function:
~ aJ1(aa
r<a, pila) = -—1@—2-
oir) =
0, r>a.

Fig. 2 shows the capacitance of a circular disk for three different
substrates, viz., & =1, 2.65, and 9.6, calculated by using two different
choices of basis functions. Note that there are crossover points for the
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two curves obtained by using the Maxwell function and the gate
function, Since the capacitance given by (10) gives a stationary value
for a trial set of basis functions, and since the one which maximizes
the value of Cyields a result closest to the exact one, it is evident that
the Maxwell function should be used for d/a values above the cross-
over point, while the gate function will give more accurate results
below it. The reason why the gate function gives better results for
larger disks even though it ignores the edge behavior is perhaps due
to the fact that the contribution of the edge singularity to the total
capacitance of the large disk is a relatively small quantity, It is noted
that for d/2>0.5, the numerical results using the gate function are
about 10 percent lower, and hence less accurate than the correspond-
ing results for the Maxwell function.

The discrepancy between the two results is even greater for
d/a <0.1, where the gate function results are now more accurate.

Asexpected, for small values of d/a, C approaches eewa?/d, which
is the value of the capacitance that would be obtained by neglecting
the fringe effects. For ¢ =1, it is known that Cd/(era?) approaches
8d/(wa) as d/a— . For d/a=10, this asymptotic value is approxi-
mately 25.5 and the numerical value computed by the present method
is 26.2.

The required computation time for the above calculations with
four-digit accuracy was about 6 s per structure for the choice 1) and
60 s for 2),* both on the CDC G-20 computer. For comparison pur-
poses, this computer is about seven to ten times slower than the IBM
360/75.

In order to check the accuracy of the computed results, the ca-
pacitance of the actual circular disks on the substrate of ¢ =2.65 has
been measured at 1.592 MHz. Fig. 2 shows that the experimental
results are in excellent agreement with the numerical computation;
in fact, the measured and the computed values differ by less than 3
percent. To conclude the discussion we might add that the principal
advantage of the method is its numerical efficiency. An important
feature of the method is that the numerical effort involved is not too
dependent upon the physical size of the structure. In contrast, in
most conventional numerical methods the computational effort is
directly proportional to the size of the structure which in turn deter-
mines the size of the associated matrix.
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New

1 This is because of the use of the time-consuming BESJ subroutine for the calcula-
tlon of J1. However, it is possﬂale to reduce the computatlon time for Ji1 by employ-
ing the polynomial approximations for J1 given in [4].

Comments on ‘‘Analysis of Automatic Homodyne
Method Amplitude and Phase Measurements”

GEORGE E. SCHAFER

In the above short paper,! on page 623, the authors state: “Phase
quadrature between the homodyne and the modulated carriers pro-
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duces a null in the detector output....” This is only true if the
modulated carrier is completely suppressed, which is the ideal case
discussed by Robertson [9].1 Inspection of the phasor when the car-
rier is not suppressed, as in Schafer [11],! shows that the null is pro-
duced when the modulated carrier is in phase quadrature with the
resultant of the homodyne and modulated carriers. The error intro-
duced by the authors’ assumption of quadrature conditions varies
from less than 0.01° for a 90-dB ratio to 90° for equality of the two
signals. In most applications this error is less than 0.6° (40 dB or
greater ratio), and for moderate accuracies it can be ignored. For
more precise measurements, however, one must use the resultant and
modulated carrier in phase-quadrature analysis.



